miércoles, 30 de abril de 2014

Tecnologías y sistemas de conmutación y enrutamiento.




CONCENTRADOR

Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.Son la base para las redes de topología tipo estrella, También es llamado repetidor multipuerto.
Existen 3 clases de hubs, las cuales son:

- Pasivo: No necesita energía eléctrica. Se dedica a la interconexion.
- Activo: Necesita alimentación. Además de concentrar el cableado, regeneran la señal, eliminan el ruido y amplifican la señal .
- Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador.


Visto lo anterior podemos sacar las siguientes conclusiones:

1. El concentrador envía información todos los ordenadores que están conectados a él. Sin importar que halla un solo destinatario de la información.

2. Este tráfico genera más probabilidades de colisión. Una colisión se produce cuando un ordenador envia información de forma simultánea que otro ordenador. Al chocar los dos mensajes se pierden y es necesario retransmitir.

3. Un concentrador no tiene capacidad de almacenar nada.

4. Su precio es barato. Añade retardos derivados de la transmisión del paquete a todos los equipos de la red (incluyendo los que no son destinatarios del mismo).

REPETIDOR 
Un repetidor es un dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir distancias más largas sin degradación o con una degradación tolerable.


En telecomunicación el término repetidor tiene el siguientes significado: 

“Dispositivo analógico que amplifica una señal de entrada, independientemente de su naturaleza (analógica o digital).”

En el caso de señales digitales el repetidor se suele denominar regenerador ya que, de hecho, la señal de salida es una señal regenerada a partir de la de entrada.
Los repetidores se utilizan tanto en cables de cobre portadores de señales eléctricas como en cables de fibra óptica portadores de luz.


Hub (concentrador)

La utilización del término de Hub es relativa al equivalente inglés de lo que en Español es conocido justamente como Concentrador, siendo un dispositivo utilizado para poder conectar una gran variedad de componentes utilizando una misma conexión, aprovechando de mejor manera posible el espacio físico de un equipo.
Este término también es aplicable a las conexiones LAN (Local Area Network, o su traducción al español, Red de Área Local) en las que se utiliza mediante la acción de un Concentrador la posibilidad de que una gran variedad de equipos estén presentes en una misma red.
Pero esto no es solamente un adaptador, sino que el Concentrador cuenta a su vez con una gran variedad de puertos que tienen la finalidad de distribuir los Datos que son enviados y recibidos a través de su Conectividad, por lo que cuando una Información ingresa a los mismos es a su vez amplificado y transmitido hacia las otras conexiones presentes en la red emisora.
Esto permite que mediante una sola conexión, distintos equipos puedan estar integrándose y poder compartir recursos que no solo van desde los Archivos, sino también poder utilizar un mismo Periférico de Salida tal como una Impresora, garantizando además la seguridad de la conexión y permitiendo una comunicación constante entre sí.
El Concentrador por sí mismo no posee capacidad de almacenamiento alguno, por lo que simplemente se trata de una especie de Canal de Mensaje, en la que cada información recibida es retransmitida en forma directa hacia el destino, pero sin especificar cuál es, por lo que si un paquete era destinado a un equipo en particular, este no solo llegará allí, sino a todas las conexiones presentes.
A su vez, tenemos el defecto de que la velocidad de funcionamiento es la relativa a la más lenta de la red, por lo que si tenemos una retransmisión de datos efectuada a Mayor Velocidad que la que éste es posible de recibir, no llegarían todos los datos y haría que el mensaje transmitido se pierda parcialmente.
Además, como se trata de una concentración, a veces suele pasar que dos o más equipos pertenecientes a dicha conexión envíen paquetes al mismo tiempo, haciendo que uno de ellos se pierda o bien no llegue a destino, lo que hace que a mayor cantidad de equipos haya en un Hub, más posibilidades hay de que estos datos "colisionen" y se pierdan en el camino.
Es por ello que actualmente se propone la utilización de los Switch en lugar de los concentradores, lo que genera no solo un tráfico de datos seguro, sino hasta la posibilidad de evitar estas pérdidas de datos y hasta mayor rendimiento en el establecimiento de la red.


CONMUTADOR (SWITCH)
Switch es un dispositivo electrónico de interconexión de redes de ordenadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI.
Un conmutador interconecta dos o más segmentos de red, pasando datos de un segmento a otro, de acuerdo con la dirección de destino de los datagramas en la red. Fusionando las redes en una sola.
Conexiones en un Switch Ethernet:
Los conmutadores poseen la capacidad de aprender y almacenar las direcciones de red de nivel 2 (direcciones MAC) de los dispositivos alcanzables a través de cada uno de sus puertos.
Por ejemplo, un equipo conectado directamente a un puerto de un conmutador provoca que el conmutador almacene su dirección MAC. Esto permite que, a diferencia de los concentradores o hubs, la información dirigida a un dispositivo vaya desde el puerto origen al puerto de destino.


ENRUTADOR (ROUTER)
Enrutador (en inglés: router), ruteador o encaminador es un dispositivo de hardware para interconexión de red de computadoras que opera en la capa tres (nivel de red). Este dispositivo permite asegurar el enrutamiento de paquetes entre redes o determinar la ruta que debe tomar el paquete de datos.



Los enrutadores operan en dos planos diferentes:
  • Plano de Control,en la que el enrutador se informa de que interfaz de salida es la más apropiada para la transmisión de paquetes específicos a determinados destinos.

  • Plano de Reenvío,que se encarga en la práctica del proceso de envío de un paquete recibido en una interfaz lógica a otra interfaz lógica saliente. Comúnmente los enrutadores se implementan también como puertas de acceso a Internet, usándose normalmente en casas y oficinas pequeñas.

martes, 29 de abril de 2014

Elaborar cables de red

Pasos para elaborar un cable UTP

Antes de comenzar los cables utp se usan mayormente para pasar informacion a travez de una red entre computadoras. Estos cables permiten enviar y recibir informacion de cualquier categoria. Los cables de "red" o utp pueden ser de varios tipos (Segun lo que necesitas).

Paso Nº1 - Primero hay que eligir que estilo de cable quieres hacer y para que. Existen dos tipos de cables T568A y el T568 B los cuales tienen funicones similares pero un patron diferente de colores.
Paso Nº2 - Segundo tienes que separar los colores en el patron como esta diseñado el cable que quieres hacer.
Paso Nº3 - Tercero con las pinzas debemos cortar a a medida y insertar lo al capuchon de la manera correcta.
Paso Nº4 - Cuarto y ultimo paso ya una ves que sabemos que el orden de colores esta bien colocado con las pinzas le aplicamos presion para que no se muevan de su posicion. Despues que terminas esto to cable debe de estar listo para hacer.

lunes, 28 de abril de 2014

Estructura y configuración de medios de transmisión física

El propósito fundamental de la estructura física de la red consiste en transportar, como flujo de bits, la información de una máquina a otra. Para realizar esta función se van a utilizar diversos medios de transmisión.

Tipo de conductor utilizado, Velocidad máxima que pueden proporcionar ( ancho de banda ), Distancias máximas que pueden ofrecer, Inmunidad frente a interferencias electromagnéticas, Facilidad de instalación, Capacidad de soportar diferentes tecnologías de nivel de enlace.


CABLES COAXIAL

La construcción de cables coaxiales varía mucho. La elección del diseño afecta al tamaño, flexibilidad y el cable pierde propiedades.

Un cable coaxial consta de un núcleo de hilo de cobre rodeado por un aislante, un apantallamiento de metal trenzado y una cubierta externa.

El apantallamiento tiene que ver con el trenzado o malla de metal (u otro material) que rodea los cables.



El núcleo de un cable coaxial transporta señales electrónicas que forman la información. Este núcleo puede ser sólido (normalmente de cobre) o de hilos.
Rodeando al núcleo existe una capa aislante dieléctrica que la separa de la malla de hilo. La malla de hilo trenzada actúa como masa, y protege al núcleo del ruido eléctrico y de la distorsión que proviene de los hilos adyacentes.
El núcleo y la malla deben estar separados uno del otro. Si llegaran a tocarse, se produciría un cortocircuito, y el ruido o las señales que se encuentren perdidas en la malla, atravesarían el hilo de cobre.
Un cortocircuito ocurre cuando dos hilos o un hilo y una tierra se ponen en contacto. Este contacto causa un flujo directo de corriente (o datos) en un camino no deseado.
En el caso de una instalación eléctrica común, un cortocircuito causará el chispazo y el fundido del fusible o del interruptor automático. Con dispositivos electrónicos que utilizan bajos voltajes, el efecto es menor, y casi no se detecta. Estos cortocircuitos de bajo voltaje causan un fallo en el dispositivo y lo normal es que se pierdan los datos que se estaban transfiriendo.
Una cubierta exterior no conductora (normalmente hecha de goma, teflón o plástico) rodea todo el cable, para evitar las posibles descargas eléctricas.
El cable coaxial es más resistente a interferencias y atenuación que el cable de par trenzado, por esto hubo un tiempo que fue el más usado.


Existen dos tipos de cable coaxial:
  • cable Thick o cable grueso: es más voluminoso, caro y difícil de instalar, pero permite conectar un mayor número de nodos y alcanzar mayores distancias.
  • cable Thin o cable fino, también conocido como cheapernet por ser más económico y fácil de instalar. Sólo se utiliza para redes con un número reducido de nodos.
Ambos tipos de cable pueden ser usados simultáneamente en una red. La velocidad de transmisión de la señal por ambos es de 10 Mb.
Ventajas del cable coaxial:
  • La protección de las señales contra interferencias eléctricas debida a otros equipos, fotocopiadoras, motores, luces fluorescentes, etc.
  • Puede cubrir distancias relativamente grandes, entre 185 y 1500 metros dependiendo del tipo de cable usado.



Cable De Par Trenzado 

El cable de par trenzado (aunque en estricto rigor debería llamarse "par torcido") es un medio de conexión usado en telecomunicaciones en el que dos conductores eléctricos aislados son entrelazados para anular las interferencias de fuentes externas y diafonía de los cables adyacentes.


El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, la cual determina el acoplamiento eléctrico en la señal, se ve aumentada. En la operación de balanceado de pares, los dos cables suelen llevar señales paralelas y adyacentes (modo diferencial), las cuales son combinadas mediante sustracción en el destino. El ruido de los dos cables se aumenta mutuamente en esta sustracción debido a que ambos cables están expuestos a interferencias electromagnéticas similares.

La tasa de trenzado, usualmente definida en vueltas por metro, forma parte de las especificaciones de un tipo concreto de cable. Cuanto menor es el número de vueltas, menor es la atenuación de la diafonía. Donde los pares no están trenzados, como en la mayoría de lasconexiones telefónicas residenciales, un miembro del par puede estar más cercano a la fuente que el otro y, por tanto, expuesto a niveles ligeramente distintos de interferencias electromagnéticas.

§  UTP acrónimo  o Cable trenzado sin apantallar. Son cables de pares trenzados sin apantallar que se utilizan para diferentes tecnologías de red local. Son de bajo costo y de fácil uso, pero producen más errores que otros tipos de cable y tienen limitaciones para trabajar a grandes distancias sin regeneración de la señal.



§  STP, acrónimo de Shielded Twisted Pair o Par trenzado apantallado. Se trata de cables de cobre aislados dentro de una cubierta protectora, con un número específico de trenzas por pie. STP se refiere a la cantidad de aislamiento alrededor de un conjunto de cables y, por lo tanto, a su inmunidad al ruido. Se utiliza en redes de ordenadores comoEthernet o Token Ring. Es más caro que la versión no apantallada o UTP.





§  FTP, acrónimo de Foiled Twisted Pair o Par trenzado con pantalla global. Son unos cables de pares que poseen una pantalla conductora global en forma trenzada. Mejora la protección frente a interferencias y su impedancia es de 12 ohmios






Fibra óptica


La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.


Comunicaciones con fibra óptica
La fibra óptica se emplea como medio de transmisión para las redes de telecomunicaciones, ya que por su flexibilidad los conductores ópticos pueden agruparse formando cables. Las fibras usadas en este campo son de plástico o de vidrio, y algunas veces de los dos tipos. Para usos interurbanos son de vidrio, por la baja atenuación que tienen.
El FTP
La fibra óptica posee una variante llamada FTP (No confundir con el protocolo FTP)
El FTP , o Par trenzado de fibra óptica en español, es la combinación de la fiabilidad del par trenzado y la velocidad de la fibra optica, se emplea solo en instalaciones científico-militares gracias a la velocidad de transmisión 10gb/s, no esta disponible para el mercado civil actualmente, su costo es 3 veces mayor al de la fibra óptica.
Para las comunicaciones se emplean fibras multimodo y monomodo, usando las multimodo para distancias cortas (hasta 5000 m) y las monomodo para acoplamientos de larga distancia. Debido a que las fibras monomodo son más sensibles a los empalmes, soldaduras y conectores, las fibras y los componentes de éstas son de mayor costo que los de las fibras multimodo.
Sensores de fibra óptica
Las fibras ópticas se pueden utilizar como sensores para medir la tensión, la temperatura, la presión y otros parámetros. El tamaño pequeño y el hecho de que por ellas no circula corriente eléctrica le da ciertas ventajas respecto al sensor eléctrico.
Las fibras ópticas se utilizan como hidrófonos para los sismos o aplicaciones de sónar. Se ha desarrollado sistemas hidrofónicos con más de 100 sensores usando la fibra óptica. Los hidrófonos son usados por la industria de petróleo así como las marinas de guerra de algunos países. La compañía alemana Sennheiser desarrolló un micrófono que trabajaba con un láser y las fibras ópticas.
Los sensores de fibra óptica para la temperatura y la presión se han desarrollado para pozos petrolíferos. Estos sensores pueden trabajar a mayores temperaturas que los sensores de semiconductores.
Otro uso de la fibra óptica como un sensor es el giroscopio óptico que usa el Boeing 767 y el uso en microsensores del hidrógeno.
Iluminación
Otro uso que le podemos dar a la fibra óptica es el de iluminar cualquier espacio. Debido a las ventajas que este tipo de iluminación representa en los últimos años ha empezado a ser muy utilizado.
Entre las ventajas de la iluminación por fibra podemos mencionar:
§  Ausencia de electricidad y calor: Esto se debe a que la fibra sólo tiene la capacidad de transmitir los haces de luz además de que la lámpara que ilumina la fibra no está en contacto directo con la misma.
§  Se puede cambiar de color la iluminación sin necesidad de cambiar la lámpara: Esto se debe a que la fibra puede transportar el haz de luz de cualquier color sin importar el color de la fibra.
§  Con una lámpara se puede hacer una iluminación más amplia por medio de fibra: Esto es debido a que con una lámpara se puede iluminar varias fibras y colocarlas en diferentes lugares.

Más usos de la fibra óptica
§  Se puede usar como una guía de onda en aplicaciones médicas o industriales en las que es necesario guiar un haz de luz hasta un blanco que no se encuentra en la línea de visión.
§  La fibra óptica se puede emplear como sensor para medir tensiones, temperatura, presión así como otros parámetros.
§  Es posible usar latiguillos de fibra junto con lentes para fabricar instrumentos de visualización largos y delgados llamados endoscopios. Los endoscopios se usan en medicina para visualizar objetos a través de un agujero pequeño. Los endoscopios industriales se usan para propósitos similares, como por ejemplo, para inspeccionar el interior de turbinas.
§  Las fibras ópticas se han empleado también para usos decorativos incluyendo iluminación, árboles de Navidad.
§  Líneas de abonado
§  Las fibras ópticas son muy usadas en el campo de la iluminación. Para edificios donde la luz puede ser recogida en la azotea y ser llevada mediante fibra óptica a cualquier parte del edificio.
§  También es utilizada para trucar el sistema sensorial de los taxis provocando que el taxímetro (algunos le llaman cuentafichas) no marque el costo real del viaje.
§  Se emplea como componente en la confección del hormigón translúcido, invención creada por el arquitecto húngaro Ron Losonczi, que consiste en una mezcla de hormigón y fibra óptica formando un nuevo material que ofrece la resistencia del hormigón pero adicionalmente, presenta la particularidad de dejar traspasar la luz de par en par.

domingo, 27 de abril de 2014

Adaptadores de red

¿Qué es un adaptador de red?
Un adaptador de red, también llamado tarjeta de red, es el interfaz electrónico entre su ordenador (host) y el cable que lo conecta a la red. Su función es que administra el tráfico de información a través de la red para asegurar que la información llegue a su destino. El adaptador de red se introduce en un slot libre de expansión de la placa base del ordenador y el cable de red se enchufa al adaptador de red.



Una tarjeta de red es un dispositivo electrónico que consta de las siguientes partes:-Interface de conexión al bus del ordenador.
-Interface de conexión al medio de transmisión.
-Componentes electrónicos internos, propios de la tarjeta.
-Elementos de configuración de la tarjeta: puentes, conmutadores, etc.

El adaptador puede venir incorporado o no al hardware por lo que es conveniente adquirir la tarjeta de red asegurándose de que existen los controladores para esa tarjeta y para el sistema operativo del host en el que se vaya a instalar. Además de que se tendrá un soporte técnico para solucionar los posibles problemas de configuración o de actualización de los controladores, tanto de los sistemas operativos de red como de las mismas redes.

La configuración se rige por una serie de parámetros que deben ser determinados en la tarjeta en función del hardware y software del sistema, de modo que no se interactúen con los parámetros de otros periféricos o tarjetas.

Los principales son:

•IRQ, interrupción:Es el número de una línea de interrupción con el que se avisan sistema y tarjeta de que se producirá un evento de comunicación entre ellos.

•Dirección de E/S:Es una dirección de memoria en la que escriben y leen el procesador central del sistema y la tarjeta, de modo que les sirve de bloque de memoria para el intercambio mutuo de datos.

•DMA: (acceso directo a memoria) Interviene cuando un periférico o tarjeta necesita transmitir datos a la memoria central, el controlador pone de acuerdo a la memoria y a la tarjeta sobre los parámetros en que se producirá el envío de datos, sin necesidad de que intervenga la CPU en el proceso de transferencia.

•Dirección de puerto de E/S: Es de tipo de transceptor. Algunas tarjetas de red incorporan varias salidas con diversos conectores, de modo que se puede escoger entre ellos al ser configurada en función de las necesidades.




Tradicionalmente, estos parámetros se configuraban en la tarjeta a través de puentes (jumpers) y conmutadores (switches). Actualmente los parámetros son guardados por el programa configurador que se suministra con la tarjeta en una memoria no volátil que reside en la propia tarjeta.

Algunas tarjetas de red incorporan un zócalo para inserción de un chip que contiene una memoria ROM.De este modo, el host puede cargar su sistema operativo remotamente.

En la última generación de tarjetas, la configuración se realiza de manera automática: a esta tecnología de autoconfiguración de llama Plug&Play (enchufar y funcionar).
Algunos adaptadores de red no se conectan directamente al bus de comunicaciones interno del ordenador, sino que lo hacen a través de otros puertos de comunicación serie o paralelo. Requieren controladores especiales para su correcto funcionamiento y su rendimiento no es tan alto como en las tarjetas conectadas al bus.

No todos los adaptadores de red sirven para todas las redes. Hay tres tipos de adaptadores de red que se utilizan en las redes locales:
ARCnet: es usado en pequeñas redes peer-to-peer, son lentas pero fiables.
Ethernet: suele utilizarse en redes peer-to-peer y cliente-servidor razonablemente grandes es el doble de rápido que ARCnet.
Token Ring: se utilizan en redes más grandes de tipo cliente-servidor, cuyo funcionamiento debe ser absolutamente seguro.Son cuatro veces más caras que las Ethernet y resultan 1.5 veces más rápidas. Proporciona un diagnóstico del estado de la red y su administración.

Los tipos de slots de la placa base están determinados por la arquitectura del bus.Hay cuatro tipos comunes de bus:
ISA:es el más antiguo y puede ser de 6 a 16 bits.
EISA:es el sistema más antiguo ya su vez el más caro.
VESA:es el más barato y el menos sofisticado.
PCI: es el más novedoso y tiene un alto rendimiento de las tarjetas de red. Tiene 32 bits.


La siguiente tabla resume los principales tipos de adaptadores Ethernet en función del cableado y la velocidad de la red. (T se utiliza para par trenzado, F para fibra óptica y X para FastEthernet).

Los adaptadores pueden ser compatibles con varios de los estándares anteriores dando lugar a numerosas combinaciones. Sin embargo, lo habitual es encontrar en el mercado tarjetas de red de tan sólo estos dos tipos:
Tarjetas de red combo. Tienen 2 conectores, uno para cable coaxial y otro para RJ45. Su velocidad máxima es de 10 Mbps por lo que soportan 10Base2 y 10BaseT. La tarjeta de red RTL8029 del fabricante Realtek pertenece a este tipo. Este grupo de tarjetas de red tienden a desaparecer (al igual que el cable coaxial).

Tarjetas de red 10/100. Tienen sólo conector para RJ45. Se adaptan a la velocidad de la red (10 Mbps o 100 Mbps). Son compatibles con 10BaseT y 100BaseT. Como ejemplos de este tipo se encuentran las tarjetas Realtek RTL8139 y 3COM 3C905.

TIPOS DE ADAPTADORES Wi-Fi: VENTAJAS E INCONVENIENTES.
Tarjetas PCI:

Es el adaptador más fiable de todos. Se trata de una tarjeta de red PCI - Wifi, con una antena de recepción. Las hay tanto para PCI como para PCIe 1x.

Hay dos tipos diferentes de tarjetas, dependiendo de la colocación de la antena:

- Con antena incorporada:

Suelen ser las más habituales. El mayor problema que plantean es que, al tener la antena incorporada en la tarjeta, es muy sensible al lugar donde coloquemos el ordenador, y este no se suele colocar precisamente con buen acceso a la parte posterior.

- Con antena independiente:



Permite poner la antena en una posición en la que la señal llegue con más intensidad, aunque tenemos la antena más a la vista.

Las tarjetas PCI Wifi 802.11n presentan la particularidad de tener tres antenas.



Ventajas:

Este tipo de adaptadores son los más fiables, ya que una vez instalados no suelen presentar ningún problema.

Inconvenientes:

Precisa una instalación de hardware (aunque esta es sumamente sencilla) y no permite utilizarla nada más que en un ordenador (salvo, claro está, que estemos montándola y desmontándola). Solo sirven para ordenadores de sobremesa.

Adaptadores USB:

Cada vez son más populares los adaptadores USB Wifi. No es preciso conectarlos directamente al puerto USB (se pueden conectar con un prolongador), por lo que nos permite escoger el punto con mejor señal para colocarlo (aunque siempre dentro de unos límites, no superiores al 1.50m).

Estos adaptadores tienen la gran ventaja de que no necesitan instalación de hardware (solo conectar), pero tienen algunos inconvenientes.

También los encontramos de dos tipos:

Con antena interna:

Es el tipo más normal y el que menos alcance suele tener. También suele ser el más económico.

Con antena externa:


Dentro de la gama de adaptadores USB Wifi con antena externa hay una muy amplia gama de modelos. Este tipo de adaptador USB es el que mejores resultados suele dar y el que tiene más ganancia y, por lo tanto, más calidad de señal (aunque esto, como siempre, depende del modelo).

También en adaptadores USB - Wifi tenemos adaptadores para Wifi 802.11n.

Ventajas:

Tienen una gran movilidad, lo que permite (sobre todo en los modelos con antena externa) colocarlos en el sitio donde tengamos una mejor señal.

Se puede utilizar en cualquier ordenador, pues solo es necesario que tengamos un puerto USB disponible (los drivers los podemos copiar a un pendrive e instalarlos desde este).

En caso de necesidad es muy sencillo pasarlos de un equipo a otro (solo hay que instalar los drivers correspondientes)

Inconvenientes:

Suelen ser bastante más inestables que las tarjetas PCI - Wifi. Además, a los problemas propios de conectividad de todo adaptador de red hay que añadirle los problemas que pueda causar el puerto USB.

Los modelos con antena interior no suelen tener mucha ganancia, por lo que en sitios con mala calidad de señal no suelen funcionar muy bien.

Adaptadores PCMCIA:

También tenemos adaptadores PCMCIA - Wi-Fi, sobre todo para su uso en portátiles.

Los adaptadores PCMCIA - Wi-Fi suelen ofrecer las mismas prestaciones que los adaptadores PCI - Wi-Fi, siendo una opción más que interesante para ordenadores portátiles.

Al igual que en los casos anteriores, tenemos dos tipos de modelos:

Con antena interna:

Estos adaptadores son más prácticos para un portátil, pero tienen algo menos de alcance (ganancia menor) que los modelos con antena externa.

Con antena externa:


Tienen mayor alcance que los de antena interna. La antena no suele ser demasiado grande, y normalmente se puede plegar para el transporte, por lo que no suele ser muy molesta.

Los modelos para Wifi 802.11n tienen tres antenas, pero en este caso suelen ser internas, más que nada por razones prácticas.



Ventajas:

Suelen tener una mejor calidad de recepción que los adaptadores USB, prácticamente la misma que una tarjeta PCI - Wi-Fi.

Inconvenientes:

El mayor inconveniente es que solo se puede utilizar en ordenadores que dispongan de puerto PCMCIA.

Todos ellos (sean del tipo que sean) precisan la instalación de drivers.

En cuanto al precio, no suele haber mucha diferencia entre un tipo y otro, dependiendo esta diferencia más de la calidad del dispositivo que de su tipo.

miércoles, 23 de abril de 2014

Protocolos de comunicación

Los protocolos de comunicaciones definen las reglas para la transmisión y recepción de la información entre los nodos de la red, de modo que para que dos nodos se puedan comunicar entre si es necesario que ambos empleen la misma configuración de protocolos. Entre los protocolos propios de una red de área local podemos distinguir dos principales grupos. Por un lado están los protocolos de los niveles físico y de enlace, niveles 1 y 2 del modelo OSI, que definen las funciones asociadas con el uso del medio de transmisión: envío de los datos a nivel de bits y trama, y el modo de acceso de los nodos al medio. Estos protocolos vienen unívocamente determinados por el tipo de red (Ethernet, Token Ring, etc.). El segundo grupo de protocolos se refiere a aquellos que realizan las funciones de los niveles de red y transporte, niveles 3 y 4 de OSI, es decir los que se encargan básicamente del encaminamiento de la información y garantizar una comunicación extremo a extremo libre de errores. Estos protocolos transmiten la información a través de la red en pequeños segmentos llamados paquetes. Si un ordenador quiere transmitir un fichero grande a otro, el fichero es dividido en paquetes en el origen y vueltos a ensamblar en el ordenador destino. Cada protocolo define su propio formato de los paquetes en el que se especifica el origen, destino, longitud y tipo del paquete, así como la información redundante para el control de errores. Los protocolos de los niveles 1 y 2 dependen del tipo de red, mientras que para los niveles 3 y 4 hay diferentes alternativas, siendo TCP/IP la configuración mas extendida. Lo que la convierte en un estándar de facto. Por su parte, los protocolos OSI representan una solución técnica muy potente y flexible, pero que actualmente esta escasamente implantada en entornos de red de área local. La jerarquía de protocolo OSI.

La información es embalada en sobres de datos para la transferencia. Cada grupo, a menudo llamados paquetes incluyen las siguientes informaciones:
- Datos a la carga: La información que se quiere transferir a través de la red, antes de ser añadida ninguna otra información. El termino carga evoca a la pirotecnia, siendo la pirotecnia una analogía apropiada para describir como los datos son disparados de un lugar a otro de la red.
- Dirección: El destino del paquete. Cada segmento de la red tiene una dirección, que solamente es importante en una red que consista en varias LAN conectadas. También hay una dirección de la estación y otra de la aplicación. La dirección de la aplicación se requiere para identificar a que aplicación de cada estación pertenece el paquete de datos.
- Código de control: Informa que describe el tipo de paquete y el tamaño. Los códigos de control también códigos de verificación de errores y otra información.

Cada nivel de la jerarquía de protocolos OSI tiene una función especifica y define un nivel de comunicaciones entre sistemas. Cuando se define un proceso de red, como la petición de un archivo por un servidor, se empieza en el punto desde el que el servidor hizo la petición. Entonces, la petición va bajando a través de la jerarquía y es convertida en cada nivel para poder ser enviada por la red.
- Nivel Físico: Define las características físicas del sistema de cableado, abarca también los métodos de red disponibles, incluyendo Token Ring, Ethernet y ArcNet. Este nivel especifica lo siguiente:

Conexiones eléctricas y físicas.
Como se convierte en un flujo de bits la información que ha sido paquetizada.
Como consigue el acceso al cable la tarjeta de red.

- Nivel de Enlace de Datos: Define las reglas para enviar y recibir información a través de la conexión física entre dos sistemas.
- Nivel de Red: Define protocolos para abrir y mantener un camino entre equipos de la red. Se ocupa del modo en que se mueven los paquetes.
- Nivel de Transporte: Suministra el mayor nivel de control en el proceso que mueve actualmente datos de un equipo a otro.
- Nivel de Sesión: Coordina el intercambio de información entre equipos, se llama así por la sesión de comunicación que establece y concluye.
- Nivel de Presentación: En este los protocolos son parte del sistema operativo y de la aplicación que el usuario acciona en la red.
- Nivel de Aplicación: En este el sistema operativo de red y sus aplicaciones se hacen disponibles a los usuarios. Los usuarios emiten ordenes para requerir los servicios de la red.

Interconexión e interoperatividad son palabras que se refieren al arte d conseguir que equipos y aplicaciones de distintos vendedores trabajen conjuntamente en una red. La interoperatividad esta en juego cuando es necesario repartir archivos entre ordenadores con sistemas operativos diferentes, o para controlar todos esos equipos distintos desde una consola central. Es mas complicado que conectar simplemente varios equipos en una red. También debemos hacer que los protocolos permitan comunicarse al equipo con cualquier otro a través del cable de la red. El protocolo de comunicación nativo de NetWare es el SPX/IPX. Este protocolo se ha vuelto extremadamente importante en la interconexión de redes de NetWare y en la estrategia de Novell con sistemas de red. TCP/IP es mas apropiado que el protocolo nativo de NetWare IPX para la interconexión de redes, así que se usa a menudo cuando se interconectan varias redes.

El nivel de protocolo para redes e interconexión de redes incluye los niveles de red y de transporte; define la conexión de redes similares y en el encaminamiento (routering) entre redes similares o distintas. En este nivel sed a la interconexión entre topologías distintas, pero o la interoperatividad. En este nivel es posible filtrar paquetes sobre una LAN en una interconexión de redes, de manera que no necesiten saltar a otra LAN cuando no es necesario.

La interoperatividad se define en los niveles superiores de la jerarquía de protocolos. Podríamos tener una aplicación de base de datos en la que parte servidor trabaje en un servidor de red, y la parte de cliente lo hiciera en equipos DOS, OS/2, Macintosh y UNIX. Otras aplicaciones interoperativa incluyen paquetes de correo electrónico. Estas permiten a los usuarios intercambiar archivos de correo en varios sistemas distintos (DOS, Macintosh, UNIX, etc.). El software que se encarga de traducir de un sistema a otro cualquier diferencia que haya en la información de los paquetes de correo electrónico.

Esta sección trata el modo en que las estaciones tradicionales basados en el DOS establecen comunicación con servidores NetWare por medio de SPX/IPX. También habla de soporte TCP/IP, Appel Talk y otros.

Para establecer una conexión entre una estación DOS y el servidor de archivos NetWare, primero se carga el software de peticiones del DOS (DOS Requester). Este software carga automáticamente el nivel de protocolo SPX/IPX y mediante el soporte ODI permite incorporar protocolos o tarjetas de red adicionales. Determina si las ordenes ejecutadas son para el sistema operativo local o para el NerWare. Si las ordenes son para NetWare, las dirige a través de la red. Si son para el DOS, las ordenes se ejecutan en forma local. El protocolo IPX esta basado en el Sistema de red de Xerox (Xerox Network System, XNS). El XNS, como la jerarquía de protocolo OSI, define niveles de comunicaciones desde el hardware hasta el nivel de aplicación. Novell utilizo el IPX de esta jerarquía (especialmente el protocolo entre redes) para crear el IPX. El IPX es un protocolo de encaminamiento, y los paquetes IPX contienen direcciones de red y de estación. Esta información va en el paquete en forma de datos de cabecera.

NetWare ofrece soporte para el protocolo estándar TCP/IP (Tansmission Control Protocol/Internet Protocol). Este se instala como modulo cargable NerWare en el servidor. El objetivo del desarrollo del TCP/IP fue crear un conjunto de protocolos que ofrecieran conectividad entre una amplia variedad de sistemas independientes. En 1983, los protocolos TCP/IP se convirtieron en el protocolo oficial usado por la red del Departamento de Defensas Norteamericana. Esta red interna ha evolucionado para conectar computadoras de dicho país y europeas que estuvieran en investigación científica y proyecto gubernamentales. Las estaciones que ejecutan TCP/IP (ofrecido por los productos LAN WorkPlace) pueden comunicarse directamente con estaciones de trabajo Sun, VAX, Macintosh, minicomputadoras, y grandes computadoras conectadas al cable de red. Un servidor NetWare que ejecuta TCP/IP puede encaminar estos paquetes si es necesario, dependiendo de la ubicación de los equipos TCP/IP. TCP/IP consta del protocolo de transporte TCP y el protocolo de red IP, el cual guarda la dirección de destino para los paquetes, y se comunica con el nivel TCP. TCP ofrece conexiones garantizadas similares a SPX. TCP/IP e IPX son protocolos dominantes en el mundo de las redes. Ambos presentan ventajas, pero TCP/IP se ha establecido como protocolo para implementar interconexiones entre redes. Con IPX, hay que mantener tablas de encaminamiento (RIP). Hay que transmitir tablas completas por la red, lo que puede disminuir drásticamente el rendimiento en una red de gran alcance que utilice líneas telefónicas o redes publicas de datos. TCP/IP no tiene estas capacidades de encaminamiento, lo que le ha supuesto una ventaja. En vez de ello, otros fabricantes han desarrollado routers especializados con prestaciones avanzadas para satisfacer las necesidades de encaminamiento de TCP/IP. TCP/IP es simple de implementar en una red NetWare. Se utiliza el programa INSTALL de NetWare para cargar los módulos que harán posible la instalación del protocolo.

El protocolo Apple Talk va incorporado en todos los equipos Macintosh. Montar una red con equipos Macintosh es tan simple como conectar los equipos con un cable Apple Talk. El sistema base (Apple Talk Phase I) permite compartir archivos e impresora hasta a 254 equipos, mientras que Apple Talk Phase II soporta hasta 16 millones de nodos Apple Talk es relativamente fácil de implementar en otros sistemas, ya que se adapta bien al protocolo OSI y permite la sustitución de protocolos en diferentes niveles para permitir la integración con otros sistemas. Apple Talk ofrece por si mismo una velocidad de transferencia de 230 Kb/seg. (Kilobit por segundo). Los cables y conectores Apple Talk son fáciles de instalar, pudiendo sustituirse por cables y conectores telefónico.

El método tradicional de comunicaciones de NetWare con IPX es ideal para redes que soportan exclusivamente estaciones DOS y OS/2. IPX es un sistema de entrega de paquetes rápido y eficiente para redes locales. Sin embargo IPX es usado exclusivamente por Novell, lo que dificulta la interoperatividad con otros tipos de redes. TCP/IP puede ofrecer redes con sistemas distintos y de gran alcance (WAN). Aunque TCP/IP esta recibiendo la máxima atención debido a la interoperatividad, también existen otros estándares como Apple Talk, y por supuesto. Los protocolos OSI. Debido a esto Novell desarrollo la Interfaz abierta de enlace de datos (Open Data - Link Interface, ODI), que permite la coexistencia de varias jerarquía de protocolos en un servidor o estación. Además. Recientemente ha incorporado la especificación de interfaz de controlador de red (Network Drive Interface Specification, NDIS), una interfaz para tarjetas de red desarrollada por Microsoft. NDIS es necesaria para conectar redes distintas, como LAN Manager de Microsoft, 3+Share de 3Com y LAN Server de IBM. NDIS o ODI pueden coexistir en una estación, de modo que los usuarios podrán acceder a redes NetWare. El propósito de ODI y NDIS es escandalizar la interfaz de controladores y tarjetas de red. De este modo, no se necesita controladores separados para cada tipo de protocolo que se desee ejecutar en la tarjeta.